
www.manaraa.com

Proceedings of IRIS 23. Laboratorium for Interaction Technology, University of Trollhättan Uddevalla,
2000. L. Svensson, U. Snis, C. Sørensen, H. Fägerlind, T. Lindroth, M. Magnusson, C. Östlund (eds.)

Software development and IS use

Pekka Reijonen
reiska@cs.utu.fi

University of Turku/Laboris

Abstract
The differences in the world views of the two parties of organizational computing,
computer scientists and information systems scientists, are rather large and seem
to be persistent. There has been attempts to somehow merge or unify the field. In
this paper we argue, however, that instead of a merger we need more definite
borders around these domains. The two ‘independent’ domains (institutions)
proposed are software development and IS use. We explore these institutions using
Soft Systems Methodology and use the concept of institutionalization by Berger &
Luckmann (1966) in interpreting the results. The conclusion of our analysis is that
we should make a clear distinction between software development, which output is
an artifact and an IS, which is cooperatively learned behavior, and choose our
world view and methods as researchers and practitioners accordingly.

Keywords: software development, IS development, IS use, learning, SSM

1. Introduction

Even though Information Systems Science or equivalent is a discipline in most
universities and business schools around the word, there are hundreds of books on
Information Systems and tens of journals concentrating on Information Systems
research there seems to be considerable problems in defining what exactly is the field of
study of Information Systems Science. Even the formulation of a commonly accepted
definition of the object of interest, the information system (IS) seems laborious
(Orlikowski, 1992; Falkenberg et al.. 1998; Alter, 1999). After about ten years of work
the IFIP WG 8.1 Task Group (FRamework of Information System COncepts, FRISCO),
the aim of which was to develop “simple, clear and unambiguous definitions of, and a
suitable terminology for the most fundamental concepts in the information systems
field, including the notions of information and communication, and of organisation and
information systems” (Falkenberg et al., 1998, p. 1) states in its final report: “The real
concern (the misunderstanding of what is involved in organisational communication) is
still there - in spite of our studies - and one may fear that some of the problems are
innate to the various interested parties” (ibid., p. 2). The task group accounts these
problems to the different “cultures” of computer science and social sciences and states
that “The FRISCO group itself underestimated these problems, in particular the
existence of ‘hidden agendas’ of the interested parties” (ibid., p. 2). The term culture
refers here to the different scientific traditions and corresponds to scientific paradigm
(Kuhn, 1970), community of observers or standard observers (Maturana, 1988), and
subuniverse of meaning or conceptual machinery of universe maintenance (Berger &

www.manaraa.com

Luckmann, 1966).
These two cultures define information systems quite differently (Falkenberg et

al., 1998, p. 5). Computer scientists interpret an information system as a technical
system, implemented with computer and telecommunications technology and social
scientists as a social system, such as an organisation in connection with its information
needs. Both the technical and social system can, of course, be represented as conceptual
systems on different levels of abstraction. Because of the different interpretations also
the object of inquiry becomes different. Basing on Berger & Luckmann (1966)
Nurminen (1988, p. 12) argues: “The rules, as it were, tell us not only how to act but
also how to think - and what to think”. With only some exaggeration we can argue that
computer scientist concentrate on systems development, emphasize technology, and
exclude nearby all actors from their analysis (or treat them as objects among other
objects) whereas social scientists are inclined to study the implementation and use
phases and emphasize the role of actors (users, human agency). This classification
matches with the two views of Orlikowski (1992, p. 399) on the different scopes of
technology found in the studies of technology, i.e. technology as ‘hardware’ and social
technologies.

The differences between these cultures are not superficial, but are based on
rather different philosophical positions and “Weltanschauung” (world view). In short,
the interpretation of an information system as a technical system is based on the
assumptions of Logical Empiricism (objectivity, dualistic ontology, and positivistic
epistemology) whereas the proponents of the social system interpretation base their
arguments on the Hermeneutic-Dialectic tradition (subjectivity, non-dualistic ontology,
and hermeneutic epistemology) (see e.g. Radnitzky, 1970; Walsham, 1993). In
information systems research, different authors have appointed different names to these
approaches. For example, Nurminen (1988) uses three perspectives in describing the
different approaches: systems-theoretical (bases on the tradition of logical empiricism
and places the machine in the foreground), socio-technical perspective (basically a
positivistic approach which attempts to take into account both the technological and
human aspects), and humanistic (hermeneutic-dialectical approach which stresses the
primacy of the human being). The different approaches have emerged chronologically
after each other and according to Nurminen (1988, p. 17) “The chronological order is
also reflected in content; each new perspective can be seen as a response to the
challenges which earlier ones failed to satisfy”. Orlikowski (1992, p. 399) has described
the contents of the different phases as follows:

“The early work assumed technology to be an objective, external force that would have
(relatively) deterministic impacts on organizational properties such as structure. In
contrast, a later group of researchers focused on the human action aspect of technology,
seeing it more as a product of shared interpretation or interventions. The third, and more
recent work on technology has reverted to a “soft” determinism where technology is
posited as an external force having impacts, but where these impacts are moderated by
human actors and organizational contexts”.

The chronological order of the approaches leads easily to the interpretation that the
“newer” approaches would somehow be better or even superior to the “older” ones.
This kind of interpretation can be drawn at least from Nurminen (1988) and Orlikowski
(1992). The order of the emergence of the different approaches is a historical fact, but at
the same time it must be remembered that the new approaches have not replaced the
older ones but just increased the number of the communities of observers. In other
words, the older approaches are strongly alive and continually applied in the research of

www.manaraa.com

technology. The coexistence of different approaches is found, however, disturbing. For
example, the main goal of the FRISCO-group was to enhance the building of common
terminology and definitions (Falkenberg et al., 1998). We argue, however, that the
existence of different approaches is a positive thing and instead of trying to narrow the
gap between them we should encourage the development of both main “cultures” and
make the distinction between them more clear. Our main argument for the proposal is
that the problems attacked by the two cultures belong to different institutional domains
and hence, different approaches are needed.

The two domains examined here are the domain of software development and
the domain of information systems use. They are sub-domains of the research and
practice of the deployment of information technology in organizations, i.e., the
metadomain of observation is about how the development, implementation and use of
information technology can be conceptualized, studied, and carried out.

Table 1. The differences between the institutions of IS development and IS
use on some distinctive attributes (variables). The attributes are produced by the
author based on research literature (e.g. Maturana, 1988; Nurminen, 1988;
Orlikowski, 1992; Falkenberg et al. 1998; Kling & Allen, 1996; Nissen, 1999).

Distinctive attribute
(variable)

The institution of
software development

The institution of IS use

Activity Software development Work tasks using the software
Goal of the activity Software functioning according

to specifications
Derived from the work (context
dependent)

Evaluation criteria of the process Time and monetary budget of the
plan of the project

Efficient performance of work
tasks

Evaluation criteria of the
outcome

Technically functioning software
(comparison of the technical
requirements to the materialized
software)

Work well done (comparison of
outcome to local group norms)

Role of the IS Outcome of the development
process

Tool deployed in work, i.e. an
environmental constraint

Type of IS entity Composite entity Simple entity (work contexts as a
whole is a composite entity)

Basic philosophical stance of
(most) actors and researchers

Logical empiricism Hermeneutic-dialectical, non- or
pre-theoretical

Standard observer Software engineer Professional worker in some
vocational domain

Conception of world (reality) Objective, mechanistic, rule-
based, predictable, causal

Subjective, socially constructed,
unpredictable, emergent

Conception of man Rule-obeying, rational Free will, creative
Process of institutionalization Application of professional

development methods
User learning

In her paper discussing the concept and role of technology in organizations using the
structuration theory by Giddens (1984) as a framework Orlikowski (1992, p. 408)
suggests that “… we recognize human interaction with technology as having two
iterative modes: the design mode and the use mode”. She makes, however, a reservation
that the distinction is “… an analytical convenience only, and that in reality these modes
of interaction are tightly coupled” (ibid., p. 408). We are in favor of a more clear
distinction between the modes and support the position taken by Nurminen (1988, p. 15
- 16): information systems development and use (Nurminen (1988, p. 15) proposes a
hierarchical system of institutions (institutional levels) consisting of use of the system,

www.manaraa.com

systems development and implementation, and information systems research. In short,
he justifies the hierarchical structure by stating that IS development methods are created
by the institution of research and used in an institutionalized manner during
development and implementation and so causing changes in the use institution. In our
treatment in this paper the question of the hierarchy of the institutions is not crucial.) are
treated as institutions in the sense of Berger & Luckmann (1966). Treating the phases as
institutions means, among other things, that both institutions have different rules, actors,
and activities as well as processes of institutionalization and standard observers (see
Table 1). In short, they are different versa of the multiversa (Maturana, 1988).

The goal of a software development project is to bring about a computer based
artifact which has the attributes and ‘behaves’ according to the rules specified in the
requirements when installed on the specified technical infrastructure. In this process the
future user is typically handled as an abstraction which has certain attributes like
rationality and skill in and aptitude for behaving according to given rules - and the
outcome of the process is usually called an “information system”.

We argue, however, that there does not exist an information system before users
are deploying the hardware and software as tools in their work tasks, i.e. it has reached
the status of an institution. Hence, the concept ‘information system’ should not be
applied to the bunch of hardware and software which is the result of a software
development effort. Instead, the concept should refer only to the holistic entity which
consists of (functioning!) hardware, software, knowledgeable users, real work tasks and
processes, defined organizational structure and division of labor, etc. The development
of an information system (IS) then becomes not the activity of software developers but
the activity of users taking place after the installation of the software product. This
development process is not a trivial task because information systems are artifacts,
which have more or less profound effects on how their users can or must carry out their
work tasks, can communicate with co-workers, are controlled, monitored, and rewarded,
and what kind of vocabulary to use. Further, the implementation of an information
system may change the division of labor, both between individuals and organizational
functions inside the organization or even between organizations as in outsourcing. From
the users’ point of view all these effects are perceived as changes in the work
environment. In order to adapt to the new environment users must be able to create a
new, shared interpretation of their environment and, among other things, integrate the
new tools into their work process. The adaptation process requires both unlearning,
learning, creation of new knowledge, and acquirement of new skills.

The discussion presented in this paper is important and has implications both for
research and practice. First, it aids in clarifying the field of IS research by making the
distinction between computer science and information systems science explicit. Second,
it gives reason and justifies the differences between the cultures in their basic
ontological and epistemological stances, concepts, and methods. From these
assumptions we can then deduct what kind of problems are, can, and should be studied
on each of the fields - and how resources should be allocated in practical IS projects.
Third, it elevates the role of users by maintaining that they are the ultimate developers
of every IS in use. As a whole, the paper tries to convince the reader that the two
institutions, software development and IS use, probably can not or at least should not,
be combined. What is needed instead is that the differences are made explicit and all
parties are aware of the presuppositions of others and their own.

We proceed by first giving a short presentation of the Soft Systems
Methodology (SSM), which we then use in manifesting and discussing the differences

www.manaraa.com

of the institution of software development and software use. In the discussion, we make
use of the basic ideas of institutionalization as presented by Berger & Luckmann (1966)
and compare our interpretation to that of Orlikowski (1992) who has based her study of
the role of technology on structuration theory.

2. SSM and the institution of software development

We make use of the Soft Systems Methodology (SSM) developed by Checkland and his
associates (Checkland, 1981, Checkland & Scholes, 1990, Checkland & Holwell, 1998)
to further highlight the differences between the two institutions of computer based
information systems, namely the software development and information systems use.

SSM is a general approach for making sense and giving structure to “real world”
problems in order to make more informed proposals for their solution. Real world refers
here to the perceived world in the same sense as Berger & Luckmann (Berger &
Luckmann (1966) give the credit for this fundamental insight to Alfred Schütz, who
throughout his work “... concentrated on the structure of the common-sense world of
everyday life” (ibid., p. 27)) (1966, p. 27) define the main concern of the sociology of
knowledge: “... what people ‘know’ as ‘reality’ in their everyday, non- or pre-theoretical
lives”. SSM is based on the ideas of General Systems Theory and hence the concept
describing something which is ‘a whole’ is very essential. Even though the concept
‘system’ has been introduced as an abstract concept it is often also used to describe
parts of the real world. In order to avoid confusion about what is reality and what is an
abstraction of the reality the concept ‘holon’ is preferred to the concept ‘system’.
According to Checkland and Scholes (1990, p. 22) this concept is coined by Arthur
Koestler in 1967 and means “constructed abstract wholes, conceding the word ‘system’
to everyday language and not trying to use it as a technical term” (ibid., pp. 25-26). The
overall aim of SSM is to take seriously the subjectivity which is a fundamental
characteristic of human affairs and to treat this subjectivity, if not exactly scientifically,
at least in a way characterized by intellectual rigor (ibid., p. 30).

The basic model of the SSM methodology is presented in Figure 1. The process
of the SSM inquiry takes place in two different realities; it begins and ends in the ‘real
world’ whereas the models of the systems (holons) are created in the world of
abstractions (‘systems thinking about real world’). This borderline is intended to remind
the actors about what the ‘soft’ in the name of the methodology means: the perceived
world does not contain holons as ‘hard systems thinkers’ propose . According to
Checkland & Scholes (1990, p. 22) the question if systems are ‘abstract’ or ‘real’ causes
much confusion in the systems literature. In order to make their point clear they state
“… it is perfectly legitimate for an investigator to say ‘I will treat education provision as
if it were system’, but that is very different from declaring that it is a system” (ibid., p.
22).

www.manaraa.com

Problem situation
considered
problematic

Problem situation
expressed

Root definitions of
relevant purposeful

activity systems

Conceptual models of
the systems (holons)

named in the root
definitions

Systems Thinking
about Real World

Real World

Action to improve
the problem

situation
Changes:

systemically
desirable,

culturally feasible

Comparison of
models and real

world

1

2

3 4

5

6
7

Software
project
planning

Domain of software
development

Domain of IS use

Figure 1. The conventional seven-stage model of Soft Systems Methodology
(SSM), adapted from Checkland & Scholes (1990). The texts in italics added by the
author.

According to our interpretation, when SSM is applied in IS development the phases 1
and 2 form the planning stage and requirements analysis, 3 and 4 the design and coding,
and phases 5-7 implementation and use. If our basic interpretation is valid it has one
very important consequence; the practice of software development is carried out in a
conceptual domain outside the real world! We return to this notion in the discussion
after examining the differences of the domains of software development and IS use
applying the CATWOE analysis of SSM.

An essential tool in SSM for describing the problem situation is the CATWOE
analysis. CATWOE is a mnemonic where C stands for Customers, A for Actors, T for
Transformation process, W for Weltanschauung, O for Owners, and E for
Environmental constraints. Our proposals for these entities in the domains of software
development and IS use are presented in Table 2. It can be readily noted that the two
domains differ from each other in all respects. For example while the software is the
object of the transformation process in the domain of software development, it is an
environmental constraint in the domain of IS use.

The crucial part of the CATWOE analysis is the formulation of root definitions.
“A root definition expresses the core purpose of purposeful activity system. That core
purpose is always expressed as a transformation process in which some entity, the
‘input’ is changed, or transformed, into some new form of the same entity, the
‘output’”(Checkland & Scholes, 1990, p. 33). Our root definition for the institution of
software development is the transformation process where Software requirements à
Software accepted by the customer and for the institution of IS use Installed software à
IS in use. We are aware that it is possible to create a great number of different root
definitions - especially if the worldview is changed. As Maturana (1988, p. 7) has
pointed out: “... there are as many domains of existence as kinds of distinctions the
observer performs ... there are as many domains of truth as domains of existence she or
he brings forth in her or his distinctions”. We hope, however, that our root definitions
do not belong to our private reality alone but can become a shared versum.

www.manaraa.com

Table 2. The elements of SSM according to its CATWOE mnemonic in the
domain of software development and IS use (Checkland & Scholes, 1990, p. 35).

CATWOE element The institution of
software development

The institution of IS use

Customers (the victims or
beneficiaries of T)

Managers of software vendors’
customers

Workforce and customers of
software vendors’ customers

Actors (those who would do T) Developers (participating users
are also developers)

Users, managers

Transformation process (the
conversion of input to output)

Software requirements à
Software accepted by the
customer

Installed software à IS in use

Weltanschauung (the worldview
which makes this T meaningful
in context)

Professional systems developers
create functioning software in
time

A change of the IS in use will
enhance production of products
and services

Owners (those who could stop T) Managers (of software vendors
and their customer’s companies)

Managers of software vendor’s
customer’s companies

Environmental constraints
(elements outside the system
which it takes as given)

Technical artifacts, rules of logic,
development tools, software
requirements, resources (time,
money)

Software (later IS), norms, rules,
procedures

From root definitions (phase 3, Figure 1), conceptual models of the named holons are
created (phase 4, Figure 1). This process is logic driven and if the root definitions are
expressed properly in the XYZ form (‘a system to do X by Y in order to achieve Z’,
Checkland & Scholes, 1990, p. 36), the creation of the conceptual models is a rather
straight forward process. We begin with the transfromation process of the software
development where the Software requirements are transformed into Software accepted
by the customer. When written according to the XYZ schema the root definition is
Convert the software requirements (X) by applying development methods (Y) to create
a software product accepted by the customer (Z). In other words, the activity taking
place is software development carried out by software developers under the
environmental constraints named in Table 2. As is evident from any book handling
software engineering, several different conceptual models can be created from this root
definition.

It is obvious that the human activity system described above is a ‘holon’
according to the definitions of SSM. In declaring their position between real the world
and human activity systems (holons) Checkland & Scholes (1990, p. 22) state:

“... it is perfectly legitimate for an investigator to say ‘I will treat education provision as
if it were a system’, but that is very different from declaring that it is a system. This may
seem a pedantic point, but it is an error which has dogged systems thinking and causes
much confusion in the systems literature. Choosing to think about the world as if it were
a system can be helpful. But this is a very different stance from arguing that the world is
a system, a position which pretends to knowledge no human being can have”.

In other words, human activity systems are holons, not ‘real systems’. However, the
outcome of the human activity system describing software development, the software
product, has features which might justify us to say that it is a system - not just as if it
were a system: a software running in a defined technical environment is a deterministic
system the ‘behavior’ of which is totally predictable in the same way as a Turing
machine: “… the operation of a Turing machine is completely determined by its
functional matrix, so that two Turing machines with the same matrix are

www.manaraa.com

indistinguishable as regards what they do” (Trakhtenbrot, 1963, p. 61). So, even though
the process of software development is a holon the object of the process is a system, i.e.
the conceptual model of the system is a complete, real world description of the system.
This means that the rules of logic apply to this system and as a consequence,
• the behavior of the system can be exactly defined
• its behavior is always predictable
• the same input always produces the same output
• its output can be defined in measurable terms
• the congruity of its specifications (software requirements) with its behavior can be

experimentally tested and rather exactly measured
• and so forth

Under these circumstances, it is a rather obvious choice to lean on the philosophical
tradition of logical empiricism, which offers concepts and methods for performing the
process of software development. In this ‘world of conceptual models’ there is no need
for intensive interpretations of the results and the risk that different observers would
make different conclusions is minimal - presuming that the basic assumptions are
shared by the observers. In short, the positivistic methodology is an appropriate choice
in most of the efforts (In our analysis, we have consciously neglected the first phases of
the software development process, the decision to invest in IT and requirements
analysis. Both of them are better understood as a social process where politics and
power play a major role, i.e. they have many common characteristics with the institution
of IS use.) performed during the process of software development. It must be
remembered, however, that the output of a software development project is nothing
more than a software product, an artifact with the pre-defined attributes.

3. The institution of IS use

Our root definition for the institution of IS use is Installed software à IS in use. In the
XYZ schema it can be expressed, for example, in the following way: Enhance user
learning (X) so that the Installed software (Y) becomes an institutionalized IS in use
(Z). When this root definition is compared to the one given for the institution of
software development it is readily seen that in this case competitive - and plausible -
definitions are much easier to produce. Even though it is rather easy to produce a large
number of different root definitions, detailed conceptual models seem to be nearly
impossible to produce. According to our understanding, this has to do with the type of
knowledge we have (and is possible to attain) from the field: when the knowledge about
the ‘laws’ of human behavior (both individual and social) comes from an interpretation
using a certain theoretical framework nearly every root definition seems plausible from
the perspective of that framework. While discussing the different definitions of
organizations found in IS literature Checkland & Holwell (1998, p. 70) note: “Such
clear models are obviously helpful to inexperienced students, though they may make
more experienced managers uneasy, since managers know how much of their time and
energy is taken up, not with the substantive facts and the generic logic of their
situations, but with the idiosyncrasies of interpretation of specific situations, and with
the motivating myths and meanings which are as characteristic of organizations as the
facts and the logic”. Most of these root definitions can not, however, be transformed
into a proper conceptual model, which could be compared to reality (see Figure 1).

www.manaraa.com

However, as “each versum of the multiversa is equally valid” (Maturana, 1988, p. 7),
we will proceed with our root definition and use the proposals of Orlikowski (1992) and
the conceptual model of the institutionalization process proposed by Berger &
Luckmann (1966) to discuss the transformation of an installed software to an IS in use.

As pointed out by Orlikowski (1992, p. 407), there is a time-space discontinuity
between the design (The main finding of this paper, which is based on the structuration
theory, is that technology has a dual nature; technology is physically constructed by
actors working in a given social context, and technology is socially constructed by
actors through the different meanings they attach to it and the various features they
emphasize and use (Orlikowski, 1992, p. 406). This notion is actually the same as the
main idea proposed by Berger & Luckmann (1966) except that they generalize the
notion to the whole of our everyday reality: “... a world that originates in their thoughts
and actions, and is maintained as real by these” (ibid., p. 33) and use of technology
because development and use are accomplished in different organizations and the
development of the artifact nearby inevitably precedes its use. As a consequence “users
of technology often treat it as a closed system or a ‘black box’, while designers tend to
adopt an open systems perspective on technology” (ibid., p. 407). Our interpretation is
somewhat different: It is not question about a time-space discontinuity but about skills-
knowledge discontinuity, i.e. users do not posses the necessary knowledge for opening
the ‘black box’. This time-space discontinuity also contributes to the reification of
technology thus hiding the human agency that initially produced the technology.
Further, according to Orlikowski (ibid., p. 421) there exists the following causal link:
“The greater the temporal and spatial distance between the construction of a technology
and its application, the greater the likelihood that the technology will be interpreted and
used with little flexibility”. [The term ‘interpretive flexibility’ is introduced by
Orlikowski and refers to “the degree to which users of a technology are engaged in its
constitution (physically and/or socially) during development or use” (Orlikowski, 1992,
p. 409)].

The conclusions presented above may be valid from the theoretical perspective
used by Orlikowski but the results of our SSM analysis in combination with the
proposals of Berger & Luckmann (1966) lead to an other interpretation.

Software vendor
(developers)

User organization
(users)Time-space

discontinuity

Software
accepted

by the
customer

Installed
software in

use

Time 1 Time 2 Time 3

User organization
(users)

Institution-
alized

IS in use

Time
discontinuity

Figure 2. Time-space discontinuity of software development and IS use and
the appropriate actors.

First, according to our SSM analysis the ‘outputs’ of the software vendor and the user
organization are not the same: for the vendor the software is an object of work and for
the user organization it should be a tool, i.e. it is a different human agency that has
created the software and the institutionalized IS (c.f. the root definitions and Figure 2).

www.manaraa.com

As a consequence, also their interpretations are different. Under these circumstances it
is rather natural that parts of the software appear as a black box to the users, because
they are interested in getting their work done, not to study computer science or
programming. As Berger & Luckmann (1966, p. 57) have, introspectively, noted: “... a
large part of the social stock of knowledge consists of recipes for the mastery of routine
problems. Typically, I have little interest in going beyond this pragmatically necessary
knowledge as long as the problems can indeed be mastered thereby”.

Second, the separation of technological development from use may indeed
enhance reification of technology, but we understand reification more as a result of a
process than as the process itself. At least in this case, the process producing reification
is user learning and it has to do with time but not with space. So, according to our
interpretation, Orlikowski’s claim that the time-space discrepancy between Time 1 and
Time 2 (Figure 2) would have effect on the visibility of human agency, is false. Namely,
the constructed nature of technology does not disappear because time elapses and the
software is produced and used at different locations, but because users learn to use the
software in their daily routines, i.e. the software is turned from a software product into a
institutionalized IS. This learning process can not, however, begin before the Time 2
(Figure 2), i.e., before the software has been constructed. In this learning process, the
space of construction is a rather irrelevant factor.

Third, the interpretative flexibility of technology does, indeed, diminish (If we
are examining one, unchanged technology in one context. However, the interpretive
flexibility of computers in general has greatly increased since the 1950s when
computers were used for calculation - now computers are applied in every thinkable
electronic equipment.) when time elapses (we do not see that the spatial distance would
make any difference). The time count does not, however, begin from Time 1 but from
Time 2, because the interpretive flexibility can not begin to diminish before the
software is in use, can be learned, and become part of the objective reality of the users.
So, the time discontinuity between Time 2 and Time 3 is of importance for the
interpretative flexibility of the software. The reduction of the interpretive flexibility of a
technology is not, however, a negative but a positive phenomenon: in practice, the
coordinated use of an IS would not be possible if the interpretive flexibility of the IS
would not diminish, i.e. the users must create a shared interpretation of the IS. As
Maturana (1988, pp. 7 - 8) has noted, common knowledge is a presupposition of all
coexistence of humans: “... disagreements between the observers, when they arise not
from trivial logical mistakes within the same versum but from the observers standing in
different versa, will have to be solved not by claiming a privileged access to an
independent reality but through the generation of a common versum through
coexistence in mutual acceptance. In the multiversa, coexistence demands consensus,
that is, common knowledge”.

The reduction of the interpretive flexibility takes place through user learning
(Berger & Luckmann (1966, p. 70 - 72) prefer the concept ‘habitualization’ to learning.
They may have chosen the concept habitualization because it refers as well to
intentional as to unintentional learning. We prefer the concept ‘learning’ because its
meaning is more clear.) and leads to the institutionalization of the IS. According to
Berger & Luckmann (1966, pp. 70 - 77), when any action is repeated frequently it
becomes cast into a pattern, i.e. becomes habitualized. When a group of people (e.g.
users of a certain software) form a reciprocal typification of certain types of habitualized
actions, the typification becomes institutionalized. These typifications are built up in the
course of a shared history of the group of people. When institutionalized, the

www.manaraa.com

typification begins to control human conduct irrespectively of the possible sanction
mechanisms (the primary social control). It is important to note from this process
description of institutionalization, that what gets institutionalized is not only the
installed software, but also all other elements of work which are affected (changed) by
the installed software. The number and type of affected variables is context dependent
but typical elements are, for example, division of labor, work procedures, and control
structures. Users who join the organization after the institutionalization of the IS have
only a marginal effect on the earlier established IS institution and they are adapted into
the institution through the process of secondary socialization. In secondary socialization
actors internalize the ‘reality’ of some institution. Secondary socialization can be
defined as “the acquisition of role-specific knowledge” (Berger & Luckmann, 1966,
p.158). The (obvious) differences between the learning process of the users who create
the institution and who become socialized into an existing institution is an interesting
question but falls outside of the scope of this paper.

The institutionalization process of an IS begins, when a software product has
been technically implemented and tested and people should begin to use it in their daily
work tasks. According to the concepts applied in this paper, this means a shift from the
institution of software development to the institution of information system use. Kling
and Allen (1996) have called this phase organizational implementation. By introducing
the term “organizational implementation” they want to highlight the position that
implementation should not be considered as just coding a program but the effective use
of computing requires further measures, which are social, psychological, and political
rather than technical. Organizational implementation means “making a computer system
accessible to those who could or should use it, and integrating its use into the routine
work practices” (ibid., p. 269). This integration process is never an easy task and
requires a shift of the perspective: “Organizational implementation is different from the
strictly technical conception of implementation as coding a program” (ibid., p. 269).
The way out of the problems encountered during the organizational implementation is
according to Kling & Allen (ibid.) rather simple: the students of information and
computer science shall be taught “… how organizations behave …” in order to avoid
professionals “… who avoid working on both social and technological issues …” (ibid.,
p. 264). In their text, however, they do not make a clear distinction between when they
are speaking about technical and social aspects of artifacts in use and when about the
development of artifacts.

To us their solution (knowledge of technical principles and ‘how organizations
behave’) does not, however, feel right. In the contrary, to us this is an explication of the
principle of technological determinism (technological imperative): if the principles of
technology and the principles of organizations were known we would be able to
calculate and plan the organizational implementation in the same manner as the
technical implementation. we argue, however, that if the situation would be this easy the
solution would have been found, it would have become institutionalized, and replicated
in all software development and implementation processes. This argument is supported
by the fact that it is much easier to find descriptions of failures than successes in the
research literature of IS (e.g. Landauer, 1995; Sauer, 1993; Star & Ruhleder, 1996). We
think that even if failures are rather common in the ‘IS reality’ the overemphasis on
failures has a methodological and epistemological grounding: It is easier to pick out
some phenomena in a process, show that they are sub-optimal, and point out their
possible causes than to show that a process is the best ever possible and show which all
elements or factors are contributing to its excellence.

www.manaraa.com

If our interpretation – the transformation process Installed software à
Institutionalized IS is a learning process of the users – is correct, we should not spend
all the resources on the technical infrastructure, software, or education of IS
professionals. What is needed instead is that users have a reasonable chance and
resources for turning the installed software into a institutionalized information system.
In practice, this learning process can be promoted with user education and training,
adequate support, and time.

4. Conclusions

The results from our SSM-based analysis of the institutions of software development
and IS use suggest that it might be better to make the distinction between them clearer
than to try to merge them. This conclusion is based on the notion that the scientific
principles applied in natural sciences (logical empiricism) seem to support the efforts in
the institution of software development whereas their applicability is rather limited in
the institution of IS use, where the theories of social science (hermeneutic-dialectical)
seem appropriate. This is in accordance with what Radnitzky (1970, p. 1) states in his
analysis of the major contemporary schools of metascience: “Hermeneutic-dialectical
philosophy has a metascience to the human sciences only. ... Logical empiricists have
not developed a special metascience of the human sciences” (If we neglect the idea of
unified science which means that the same principles are universally applicable to
everything called ‘scientific’).

As noted by Nissen (1998, p. 194), the decisive point between the traditions is
not between the methods of inquiry, but whether the object of study includes human
beings or not. As a consequence, we should be flexible enough to change our basic
philosophical assumptions according to the problem at hand, i.e. we should choose the
philosophical stance which suits the solution of the problem rather than first choose a
philosophical stance and then look what kinds of problems can be studied. Our proposal
for a classification of the problem domain has two categories, software development
with an artifact as an output and IS use, which is cooperatively learned behavior.

It seems that this distinction is gaining practical importance, because of the
change from tailor made applications to off-the-self software, which is developed in
‘software factories’ according to the norms of industrial production. Future users have
usually only a minimal role in this kind of production system and if users participate,
they often come from a different culture (e.g. from the USA for software used in
Europe). This distinction may also help to increase the relevancy of the research of the
deployment of information technology in organizations, for example, in the field of
information systems development research: According to the analysis of Iivari and
Lyytinen (1998) there is a total of ten Scandinavian information systems development
approaches and only two of them have gained some importance in practical use. These
‘usable’ approaches are ‘the infological approach’ and ‘the formal approach’ - and both
of them have their theoretical roots in formal logic.

5. References

Alter, S. (1999). A general, yet useful theory of information systems. Communications of the
Association for Information Systems, 1 (March 1999), Article 13. An electronic journal

www.manaraa.com

available at http://cais.aisnet.org/contents.asp, (30.3.2000).
Berger, P. L. & Luckmann, T. (1966). The social construction of reality. A treatise in the

sociology of knowledge. London: Penguin Books.
Checkland, P. B. (1981). Systems thinking, systems practice. Chichester, England: John Wiley

& Sons.
Checkland, P. B., & Scholes, J. (1990). Soft Systems Methodology in action. Chichester,

England: John Wiley & Sons.
Checkland, P. & Holwell, S. (1998). Information, systems and information systems - making

sense of the field. Chichester, England: John Wiley & Sons.
Falkenberg, E. D., Hesse, W., Lindgreen, P., Nilsson, B. E., Oei, J. L. H., Rolland, C., Stamper,

R. K., Van Asshe, F. J. M., Verrijn-Stuart, A., & Voss, K. (1998). A framework of
information system concepts (The FRISCO-report, Web-edition), IFIP, available by
anonymous ftp://ftp.leidenuniv.nl/pub/rul/fri-full.zip, 20.4.1999.

Giddens, A. (1984). The constitution of society: Outline of the theory of structure. Berkeley,
CA: University of California Press.

Iivari, J., & Lyytinen, K. (1998). Research on information systems development in Scandinavia
- Unity in plurality. Scandinavian Journal of Information systems, 10 (1&2), 135 - 186.

Kling, R. & Allen, J. P. (1996). Can computer science solve organizational problems? The case
for organizational informatics. In R. Kling (Ed.), Computerization and Controversy (2nd
edition) (pp. 261 - 276). New York: Academic Press.

Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: .University of Chicago
Press.

Landauer, T. K.. (1995). The trouble with computers - Usefulness, usability, and productivity.
Cambridge, Mass.: The MIT Press.

Maturana, H. R. (1988). Ontology of observing: The biological foundations of self
consciousness and the physical domain of existence. In R. Donaldson (Ed.), Texts in
cybernetic theory: An in-depth exploration of the thoughts of Humberto Maturana, William
T. Powers, and Ernst von Glaserfeld. A conference workbook: American Society for
Cybernetics.

Nissen, H-E. (1998). Quo vadis: Scandinavian information systems development research?
Scandinavian Journal of Information Systems, 10 (1&2), 193 - 204.

Nurminen, M. I. (1988). People or computers: Three ways of looking at information systems.
Lund: Studentlitteratur.

Orlikowski, W. J. (1992). The duality of technology: Rethinking the concept of technology in
organizations. Organization Science, 3 (3), 398 - 427.

Radnitzky, G. (1970). Contemporary schools of metascience. Vol. II: Continental schools of
metascience. Göteborg: Akademiförlaget.

Sauer, C. (1993). Why information systems fail: A case study approach. Henley-on-Thames.:
Alfred Waller Limited.

Star, S. L. & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: Design and access
for large information spaces. Information Systems Research, 7 (1), 111 - 134.

Trakhtenbrot, B. A. (1963). Algorithms and automatic computing machines. Boston: D.C.
Heath and Company.

Walsham, G. (1993). Interpreting information systems in organizations. New York: John
Wiley.

